

Results of experimental and numerical studies of light gas mixing processes for NNP accident management tasks within ERCOSAM-SAMARA projects

> <u>M.A. Kamnev</u>, A.M. Khizbullin, O.V. Tyurikov, E.P. Potekhin, M.A. Antonenkov JSC "Afrikantov OKBM", Nizhny Novgorod, Russia

Ninth International Scientific and Technical Conference, MNTK-2014, Moscow, 21-23 May 2014

ERCOSAM – SAMARA Projects

2

ROSATOM» COMPAN

Goal&Activities

Creation of an experimental database on the physical phenomena occurring in the containment of light water reactors during postulated accident sequences involving core damage and demonstrate the maturity of the main computer programs developed for containment thermal-hydraulic analysis

Objectives

- to establish, for a severe accident sequence chosen from existing plant calculations and representative the strength of hydrogen stratification that can be established into the containment

- to determine whether this stratification, once established, can be broken down by the operation of SAM devices: sprays, coolers and PARs

Testing of containment thermal-hydraulics response

- •5 facilities (16 tests)
- one scenario of tests
- initial and boundary conditions
- 3 Severe Accident Management systems (SAMs); sprays, coolers and Recombiners
- •Scaling factor
- Effect of Complexity of the Geometry

SPOT (RU),

59m3

MISTRA (FR),

100м3

PANDA (CH),

5 tests

2х90 м3

Code benchmarking using the concept "nearly prototypical scale" facility HYMIX (RU), 3181^{M3}

													1
Organization			PSI	IRSN	CEA	NRG	кіт	AECL	JUELICH	IBRAE RAN	SSC RF- IPPE	JSC "Afrikanto v OKBM"	USNRC
			gothic/ Fluent	ASTEC TONUS	TONUS	FLUENT-6 CFD	GASFLOW	gothic/ Fluent	ªCFX-13 [▶] COCOSY S	SOCRAT (plant calc.) OpenFOA M/FLUENT	KUPOL	KUPOL- MT	FLUENT
	T1	Spray		PL, PO		PT,PO	РО	PO (Fluent)	-	PT, PO	РО	РО	PO
TOSQAN	T2	Spray	PT,PO	PL, PO		PT,PO	РО	PO(Fluent)	-	РО	РО		PT, PO
	Т3	Spray	PT,PO	PL, PO		PO	РО	PO(Fluent)	-	РО	РО		
MISTRA	M1	Spray				PO	PO		-	PO	PT, PO		
	M2	Cooler					PO		^a PT, ^a PO	PT, PO	PT, PO	PT, PO	
	M3	PAR			PL, PO	PO	PO		^a PO	PT, PO	PO	PT, PO	
	M4	2 PARs			PL, PO		PO		^a PT, ^a PO	PO	PO	PO	
	P1	Spray	PL, PT, PO	PO		PT,PO	PL, PO	PL, PT, PO	-	PT, PO	PT, PO		
	P2	Spray	PL, PT, PO	PO		PO	РО	PL, PT, PO	-	РО	PT, PO		PT, PO
PANDA	P3	Cooler	PL, PT, PO			РО	РО	PL, PT, PO	[▶] PT, [▶] PO	PT, PO	PT, PO	РО	PO
	P4	PAR	PL, PT, PO	РО		PT,PO	PO		^b PT, ^b PO, ^a PO	PT, PO	РО	РО	РО
	P5	Cooler	PL, PT, PO				PL, PO	PL, PT, PO	^b PT, ^b PO	РО	PT, PO	PT, PO	
НҮМІХ	K1	Spray ²		PT/PO					-	PT	PT, PO		
	K2	Cooler ³	PT				PT, PO	PT ⁶	^b PT, ^b PO	PT	PT, PO		
SPOT	S1	Cooler ⁴	РО				PT, PO		^b PT, ^b PO	PT, PO	PO	PL, PT, PO	
	S2	Cooler 5					PT, PO		[▶] PT, [▶] PO	PT, PO	РО	PL, PT, PO	
													-

PL: planning analysis, PT: pre-test analysis, PO: Post-test analysis

Original test scenario

The following target conditions should be obtained:

- approximately homogeneous steam&air distribution inside the vessel at the end of the Phase I with steam molar fraction 60 % above the injection point;

- pressure in the containment at the end of the helium injection phase is 2.5 bar;
- He =10% (vol.) above the injection point at the end of the He injection.

Scaling down & stratification criteria

	phase 1_steam, g/s	phase 2_He, g/s	volume, m3
GC	8000	61	20000
SPOT	24	0,18*	59

$$\frac{H_{uhm}}{D_{uhm}} > 0.22 Fr^{1/2}$$

In view of stratification criteria implementation, steam and

helium injection diameter and height were determined

Hunt criterion determine the conditions of stratification of buoyant jet subject with consideration of vessel walls [2]

$$\left(\frac{L_{cmpyu}}{H_{uhoc}}\right)_{kpum} = \frac{1}{G} \left[\frac{1}{3 \cdot \alpha^{1/2}} \left(\frac{2 \cdot H_{uhoc}}{D_{30}}\right)^{-1} - 1\right]$$

Scheme of the SPOT updated

1 – heating circuit; 2 – steam supply pipeline; 3 – helium supply pipeline; 4 – drainage pipeline; 5 – thermal transducer racks; 6 – sampling points; 7,8 – removable inserts; 9 – cooler; 10 – cooling circuit; 11 – containment model; 12 – condensate tank; 13 –pump

Cooler capacity of SPOT test facility is determined based on maximum capacity of air coolers for CANDU 6 NPP heat removal system (containment volume is 50,000 m³), which is 0.74 kW/m³. For containment model volume of 59 m³, SPOT cooler capacity is 44 kW.

Information and measurement system

Operating window

thermocouples location in the vessel

99.3

106.4

111.8

Thermocouples	95		
Туре	К		
Measuring range	0-180 °C		

A SC «ROSATOM» COMPANY

11

Gas concentration measurement system

#470 44003 MA70 88002 X-D KAOZ MATOCROOT MA 70C PO02 MA70 AA002 咏 -2 MA70 AA001 2428 A1001 A1001 MA70 OP001 MA 710000 MA79 MA78 MA77 MA76 MA75 MA74 MA73 MA72 MA71 ATOOT ATOOT ATOOT ATOOT ATOOT ATOOT ATOOT ATOOT MA 7900001 MA70 88001 DN2 DN2 DN2 DNZ DW2 - 9 gas sampling lines; - chromatograph "Crystall-5000"

S1 test procedure Relaxation Phase III Phase II Phase 0 Phase I Phase IV Helium Sta-No Phase 0 – preconditioning injection bilizainjection Steam injection phase; tion Containment pressure **Cooler operation** Preconditioning t^{avg}He = 100°C t_{steam} = 120-127°C G_{He} = 1 g/s Phase I – LOCA blowdown; Duration Duration G_{steam} = 24 g/s Duration = 600 s 50% steam = 250 s = 750 s 50% air Phase II – He injection; tfluid = t_{wall} = 105 °C Phase IV – cooler activation 2.5 bar 2.5 bar tair = twall 2.0 bar = 25 °C 1.0 bar Relaxation Phase III Phase II Phase I Phase IV Time 300 -80 290 -280 -270 -70 260 -250 -60 240 -230 -Pressure, kPa 220 -50 210-Power, kW b 200 -190 180 -170 -30 160 -150 -140 -20 130-120-10 110-1500 3000 4500 6000 7500 9000 10500 12000 0 Time, s 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 Time, s

Condition before cooler activation

line t27-t43, t=2750 c

Before cooler activation the He stratified layer above the injection point is observed

10% -helium; 70% - steam; 20% - air

Below the injection point **50% - air and 50% - steam**

He and steam molar fraction at cooler activation (test S1)

In Phase IV the stratified layer above the cooler is retained

Test S2 & He and steam molar fraction at cooler activation

Q,

16

Test S2 is performed to estimate the cooler effect on helium distribution in vessel. The cooler is put into operation at the second phase together with helium supply to the vessel

PANDA test facility and calculation model

MISTRA test facility and calculation model

Calculation results for the experiment with recombiner at PANDA test facility

- **δ**P = 2 % (± 3,5...7 %)
- **δ**T = 8 % (± 7...20 %)
- **δ**n(He) = 5 % (16 %)
- **Γ** δn(πap) = 10 % (16 %

6

Calculation results for the experiment with cooler at PANDA

Calculation results for the experiment with cooler at MISTRA test facility

Max. deviations

- **δ**P = 5 % (± 7...14 %)
- **δ**T = 15 % (± 20 %)
- **Γ** δn(He) = 3 % (16 %)
- δn(πap) = 15 % (16 %)

23

Calculation results for the experiment with spray at TOSQAN

Calculation results for the experiment with cooler at SPOT facility

- **δ**P = 9 % (± 7...14 %)
- **δ**T = 16 % (± 20 %)
- **Γ** δn(He) = 4 % (16 %)
- δn(πap) = 10 % (16 %)

Cooler

Conclusions

1. Within ERCOSAM-SAMARA projects stratification of light gas and cooler operation effect on stratification were studied by experiment at SPOT test facility

2. According to the results of studies, stable stratification of steam-gas mixture through containment model height before cooler putting into operation was obtained. At that, cooler operation does hot ensure complete atmosphere homogenization through the entire height of containment model volume.

3. Numeric simulation of experiments at SPOT, PANDA, MISTRA, and TOSQAN was performed using KUPOL-MT code with lumped parameters. The results of numeric analysis show that HX and recombiner operation does not result in complete homogenization of atmosphere in the containment models; the sprinkler system ensures stratified layer destroying that is confirmed by the results of experiments.

4. The experiments within ERCOSAM-SAMARA project are the benchmarks and are important verification material, which can be used for verification of lumped parameter code (LP-code) and space codes on computational fluid dynamics (CFD-code).

5. It is necessary to perform the additional calculation and experimental studies aimed at elimination of high-concentration hydrogen generation in the containment volume. Investigation of joint recombiners and coolers operation can be one of the ways of further studies.

Thank you for attention!

References

- J. H. Lee, G.H. Jirka. "Stability and mixing of a vertical round buoyant jet in shallow water", Energy Laboratory Report No. MIT-EL 74-014, 1974.
- G.R. Hunt, P. Cooper, P.F. Linden, "Thermal stratification produced by plumes and jets in enclosed spaces", Building and Environment 36 (2001), 871-882.

